Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.823
Filtrar
1.
Heliyon ; 10(7): e28436, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560252

RESUMEN

Background: Aquaporins (AQPs) are transmembrane channel proteins. Aquaporin 1 (AQP1), Aquaporin 3 (AQP3), and Aquaporin 7 (AQP7) are expressed in the jejunum. The purpose of this study was to ascertain how a high-fat high-fructose diet (HFFD) and intermittent fasting (IF) affect AQP1, AQP3, and AQP7 expression in the rat jejunum. Methods: Sixteen adult male rats were divided into control rats (n = 4) fed on a basal diet and water ad libitum for 12 weeks; IF control rats (n = 4) followed the IF protocol, HFFD-fed rats (n = 8) fed HFFD for eight weeks, and rats were randomized into two groups: HFFD only or HFFD and IF protocol from the beginning of the 9th week until the end of the experiment. The lipid profile values were assessed after 12 weeks. Jejunal oxidative markers (malondialdehyde and reduced glutathione) and AQP1, AQP3, and AQP7 mRNA expression were measured. Jejunal sections were used for morphometric analysis of villus length and crypt depth. Immunohistochemical evaluation of AQP1, AQP3, and AQP7 expression was also performed. Results: IF ameliorates HFFD-induced lipid profile, oxidative stress, and jejunal morphometric changes. The results of both mRNA expression using PCR and immunohistochemistry showed a significant increase in AQP1, AQP3, and AQP7 expression in HFFD, whereas IF caused a decline in this expression. Conclusion: These findings suggest that IF can reduce inflammation, and oxidative stress and restore jejunal morphology caused by HFFD.

2.
Biomed Pharmacother ; 174: 116531, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38574624

RESUMEN

N-acylethanolamines (NAEs) are endogenous lipid-signalling molecules involved in inflammation and energy metabolism. The potential pharmacological effect of NAE association in managing inflammation-based metabolic disorders is unexplored. To date, targeting liver-adipose axis can be considered a therapeutic approach for the treatment of obesity and related dysfunctions. Here, we investigated the metabolic effect of OLALIAMID® (OLA), an olive oil-derived NAE mixture, in limiting liver and adipose tissue (AT) dysfunction of high-fat diet (HFD)-fed mice. OLA reduced body weight and fat mass in obese mice, decreasing insulin resistance (IR), as shown by homeostasis model assessment index, and leptin/adiponectin ratio, a marker of adipocyte dysfunction. OLA improved serum lipid and hepatic profile and the immune/inflammatory pattern of metainflammation. In liver of HFD mice, OLA treatment counteracted glucose and lipid dysmetabolism, restoring insulin signalling (phosphorylation of AKT and AMPK), and reducing mRNAs of key markers of fatty acid accumulation. Furthermore, OLA positively affected AT function deeply altered by HFD by reprogramming of genes involved in thermogenesis of interscapular brown AT (iBAT) and subcutaneous white AT (scWAT), and inducing the beigeing of scWAT. Notably, the NAE mixture reduced inflammation in iBAT and promoted M1-to-M2 macrophage shift in scWAT of obese mice. The tissue and systemic anti-inflammatory effects of OLA and the increased expression of glucose transporter 4 in scWAT contributed to the improvement of gluco-lipid toxicity and insulin sensitivity. In conclusion, we demonstrated that this olive oil-derived NAE mixture is a valid nutritional strategy to counteract IR and obesity acting on liver-AT crosstalk, restoring both hepatic and AT function and metabolism.

3.
Ecotoxicol Environ Saf ; 276: 116280, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574648

RESUMEN

In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.

4.
Front Physiol ; 15: 1357730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595641

RESUMEN

Background: Incretins, i.e., glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) promote insulin secretion to reduce postprandial blood sugar. Previous studies found incretins in the salivary glands. However, the role of GLP-1 and GIP in the submandibular gland (SMG) is unclear. This study investigates the effects of a high-fat diet (HFD) on the expression of GLP-1 and GIP throughout the development of rat SMG. Methods: Pregnant 11-week-old Wistar rats were divided into two groups: those fed on a standard diet (n = 5) and those fed on a HFD (n = 5). From day 7 of pregnancy and throughout the lactation period, all the rats were fed on either a chow diet or HFD. The newborns were divided into four subgroups (n = 6): standard diet males (SM), HFD males (HM), standard diet females (SF), and HFD females (HF). The SMGs of 3- and 10-week-old rats from each subgroup were collected under general anesthesia. Moreover, body weight, food intake, and fasting blood sugar were measured. The mRNA expression of GLP-1 and GIP was quantified, and the localization was observed using immunohistochemistry (p < 0.05). Results: GLP-1 mRNA expression was statistically significantly more upregulated in HM than in HF at 3 weeks. Moreover, GLP-1 mRNA expression was significantly higher in HM than in both SM and HF at 10 weeks. Although a decreasing trend was observed in GIP mRNA expression in both 3- and 10-week-old rats fed on a HFD, a significant difference between HM and SM only occurred at 3 weeks. Furthermore, the GIP mRNA expression of HM was lower than that of HF at 10 weeks. Immunohistochemical staining revealed GLP-1 and GIP expression mainly in the SMG duct system. Moreover, vacuolated cytoplasm in the duct was observed in rats fed on a HFD. Conclusion: Exposure to HFD during pre- and post-natal periods increased GLP-1 mRNA expression in the SMGs of male rats. However, GIP expression decreased following the HFD in male newborns. Furthermore, a decreasing trend of GIP mRNA expression was observed in male newborns after HFD feeding. Sex influenced incretin hormones secretion and obesity-related conditions. HFD during pre- and post-natal periods reprograms the epigenome, contributing to subsequent disease development.

5.
Heliyon ; 10(7): e29015, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596120

RESUMEN

Presently, it is known that the progression of obesity concomitantly leads to polycystic ovary syndrome and infertility. This study aimed to evaluate the potential effects of metformin (M; insulin secretagogues) and gliclazide (G; insulin sensitizer) alone and their combination at different doses to treat obesity-induced PCOS. High high-fat diet was given to all female Wistar rats for nine weeks to induce obesity except for the normal control group which received a normal chow diet. Estradiol valerate (0.8 mg/kg) was also given to all obese rats to induce polycystic ovarian syndrome. After the induction, M (100, 300 mg/kg) and G (5, 10 mg/kg) were given orally either individually or in combination for 28 days. The notable (p < 0.0001) reduction in body weight and blood glucose level was observed in treatment groups in contrast to disease control (DCG). The marked (p < 0.05-0.0001) decrease in hemocylated hemoglobin, serum insulin, cholesterol, triglycerides, and testosterone was observed in treated groups, notably in combination groups (M100+G10 mg/kg) in contrast to DCG. There was a considerable (p < 0.01-0.0001) increase in progesterone E2, estradiol, luteinizing, and follicle-stimulating hormones in treated groups as compared to DCG. Treatment with M and G treated groups also exhibited marked (p < 0.05-0.0001) increases in SOD, CAT, and GSH while decreased in NO and MDA levels in ovary tissue as evidenced by the histological study of the ovary. Treatment with M and G alone and in combination significantly (p < 0.0001) restored the serum IL-6, NrF2, and NF-κB levels as compared to DCG. The results inveterate that the M and G combination (M100+G10, and M300+G10) was useful in treating obesity-induced infertility due to antioxidant properties, hypolipidemic effects, and modulation of inflammatory markers.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167158, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588780

RESUMEN

OBJECTIVES: Diabetic cardiomyopathy (DCM) is the leading cause of mortality in type 2 diabetes mellitus (T2DM) patients, with its underlying mechanisms still elusive. This study aims to investigate the role of cholesterol-25-monooxygenase (CH25H) in T2DM induced cardiomyopathy. METHODS: High fat diet combined with streptozotocin (HFD/STZ) were used to establish a T2DM model. CH25H and its product 25-hydroxycholesterol (25HC) were detected in the hearts of T2DM model. Gain- or loss-of-function of CH25H were performed by receiving AAV9-cTNT-CH25H or CH25H knockout (CH25H-/-) mice with HFD/STZ treatment. Cardiac function was evaluated using echocardiography, and cardiac tissues were collected for immunoblot analysis, histological assessment and quantitative polymerase chain reaction (qPCR). Mitochondrial morphology and function were evaluated using transmission electron microscopy (TEM) and Seahorse XF Cell Mito Stress Test Kit. RNA-sequence analysis was performed to determine the molecular changes associated with CH25H deletion. RESULTS: CH25H and 25HC were significantly decreased in the hearts of T2DM mice. CH25H-/- mice treated with HFD/STZ exhibited impaired mitochondrial function and structure, increased lipid accumulation, and aggregated cardiac dysfunction. Conversely, T2DM mice receiving AAV9-CH25H displayed cardioprotective effects. Mechanistically, RNA sequencing and qPCR analysis revealed that CH25H deficiency decreased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and its target gene expression. Additionally, administration of ZLN005, a potent PGC-1α activator, partially protected against high glucose and palmitic acid induced mitochondria dysfunction and lipid accumulation in vitro. CONCLUSION: Our study provides compelling evidence supporting the protective role of CH25H in T2DM-induced cardiomyopathy. Furthermore, the regulation of PGC-1α may be intricately involved in this cardioprotective process.

7.
J Neurogastroenterol Motil ; 30(2): 236-250, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38576373

RESUMEN

Background/Aims: A high-fat diet (HFD) causes dysbiosis and promotes inflammatory responses in the colon. This study aims to evaluate the effects of Clostridium butyricum on HFD-induced gut microbial changes in rats. Methods: Six-week-old Fischer-344 rats with both sexes were given a control or HFD during 8 weeks, and 1-to-100-fold diluted Clostridium butyricum were administered by gavage. Fecal microbiota analyses were conducted using 16S ribosomal RNA metagenomic sequencing and predictive functional profiling of microbial communities in metabolism. Results: A significant increase in Ruminococcaceae and Lachnospiraceae, which are butyric acid-producing bacterial families, was observed in the probiotics groups depending on sex. In contrast, Akkermansia muciniphila, which increased through a HFD regardless of sex, and decreased in the probiotics groups. A. muciniphila positively correlated with Claudin-1 expression in males (P < 0.001) and negatively correlated with the expression of Claudin-2 (P = 0.042), IL-1ß (P = 0.037), and IL-6 (P = 0.044) in females. In terms of functional analyses, a HFD decreased the relative abundances of M00131 (carbohydrate metabolism module), M00579, and M00608 (energy metabolism), and increased those of M00307 (carbohydrate metabolism), regardless of sex. However, these changes recovered especially in male C. butyricum groups. Furthermore, M00131, M00579, and M00608 showed a positive correlation and M00307 showed a negative correlation with the relative abundance of A. muciniphila (P < 0.001). Conclusion: The beneficial effects of C. butyricum on HFD-induced gut dysbiosis in young male rats originate from the functional profiles of carbohydrate and energy metabolism.

8.
J Microbiol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625645

RESUMEN

Colorectal cancer (CRC) is the second-highest cause of cancer-associated mortality among both men and women worldwide. One of the risk factors for CRC is obesity, which is correlated with a high-fat diet prevalent in Western dietary habits. The association between an obesogenic high-fat diet and CRC has been established for several decades; however, the mechanisms by which a high-fat diet increases the risk of CRC remain unclear. Recent studies indicate that gut microbiota strongly influence the pathogenesis of both high-fat diet-induced obesity and CRC. The gut microbiota is composed of hundreds of bacterial species, some of which are implicated in CRC. In particular, the expansion of facultative anaerobic Enterobacteriaceae, which is considered a microbial signature of intestinal microbiota functional imbalance (dysbiosis), is associated with both high-fat diet-induced obesity and CRC. Here, we review the interaction between the gut microbiome and its metabolic byproducts in the context of colorectal cancer (CRC) during high-fat diet-induced obesity. In addition, we will cover how a high-fat diet can drive the expansion of genotoxin-producing Escherichia coli by altering intestinal epithelial cell metabolism during gut inflammation conditions.

9.
Metabolism ; 155: 155912, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38609038

RESUMEN

Saroglitazar (SARO), a dual peroxisome proliferator activated receptor (PPAR)-α/γ agonist, has been used to treat metabolic diseases such as insulin resistance and diabetic dyslipidemia in patients with non-alcoholic fatty liver disease (NAFLD). SARO, administered at a dose of 4 mg/day, has been consistently studied in clinical trials with different time points ranging from 4 to 24 weeks with NAFLD patients. Due to its PPAR-γ agonistic action, SARO prevents adipose tissue-mediated fatty acid delivery to the liver by increasing insulin sensitivity and regulating adiponectin and leptin levels in adipose tissue. In hepatocytes, SARO induces fatty acid ß-oxidation in mitochondria and transcriptionally activates lipid metabolizing genes in peroxisomes. SARO inhibits insulin resistance, thereby preventing the activation of sterol regulatory element-binding proteins -1c and carbohydrate response element binding protein in hepatocytes through its PPAR-α agonistic action. SARO treatment reduces lipotoxicity-mediated oxidative stress by activating the nuclear factor erythroid 2-related factor 2 and transcriptionally expressing the antioxidants from the antioxidant response element in the nucleus through its PPAR-γ agonistic action. SARO provides a PPAR-α/γ-mediated anti-inflammatory effect by preventing the phosphorylation of mitogen-activated protein kinases (JNK and ERK) and nuclear factor kappa B in hepatocytes. Additionally, SARO interferes with transforming growth factor-ß/Smad downstream signaling, thereby reducing liver fibrosis progression through its PPAR-α/γ agonistic actions. Thus, SARO improves insulin resistance and dyslipidemia in NAFLD, reduces lipid accumulation in the liver, and thereby prevents mitochondrial toxicity, oxidative stress, inflammation, and fibrosis progression. This review summarizes the possible molecular mechanism of SARO in the NAFLD.

10.
Mol Biol Rep ; 51(1): 516, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622329

RESUMEN

BACKGROUND: Resveratrol has received much attention due to its beneficial effects including antioxidant activity. The purpose of this study was to investigate the therapeutic effects of resveratrol treatment on oxidative stress and insulin resistance in the skeletal muscle of high-fat diet (HFD)-fed animals. METHODS AND RESULTS: A total of 30 six-week-old C57BL/6J mice were randomly allocated to three groups (10 animals in each group): The control group in which mice were fed a normal chow diet (NCD); the HFD group in which mice were fed an HFD for 26 weeks; and the HFD-resveratrol group in which HFD was replaced by a resveratrol supplemented-HFD (400 mg/kg diet) after 10 weeks of HFD feeding. At the end of this period, gastrocnemius muscle samples were examined to determine insulin resistance and the oxidative status in the presence of HFD and resveratrol. Resveratrol supplementation in HFD-fed mice reduced body and adipose tissue weight, improved insulin sensitivity, and decreased oxidative stress as indicated by lower malonaldehyde (MDA) levels and higher total antioxidant capacity. The supplement also increased the expression and activity of antioxidative enzymes in gastrocnemius muscle and modulated Nrf2 and Keap1 expression levels. CONCLUSIONS: These results suggest that resveratrol is effective in improving the antioxidant defense system of the skeletal muscle in HFD-fed mice, indicating its therapeutic potential to combat diseases associated with insulin resistance and oxidative stress.


Asunto(s)
Antioxidantes , Resistencia a la Insulina , Ratones , Animales , Antioxidantes/metabolismo , Resveratrol/farmacología , Resveratrol/metabolismo , Resistencia a la Insulina/fisiología , Dieta Alta en Grasa/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Transducción de Señal , Insulina/metabolismo
11.
J Nutr ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582387

RESUMEN

BACKGROUND: Phosphatidylcholine (PC) derived from eggs has been shown to beneficially modulate T cell response and intestinal permeability under the context of a high-fat diet. OBJECTIVES: The objective of this study was to determine whether there is a differential effect of plant and animal-derived sources of PC on immune function. METHODS: Four-week-old male Wistar rats were randomly assigned to consume 1 of 4 diets (n = 10/group) for 12 wk, all containing 1.5 g of total choline/kg of diet but differing in choline forms: 1-Control Low-Fat [CLF, 20% fat, 100% free choline (FC)]; 2-Control High-Fat (CHF, 50% fat, 100% FC); 3-High-Fat Egg-derived PC (EPC, 50% fat, 100% Egg-PC); 4-High-Fat Soy-derived PC (SPC, 50% fat, 100% Soy-PC). Immune cell functions and phenotypes were measured in splenocytes by ex vivo cytokine production after mitogen stimulation and flow cytometry, respectively. RESULTS: The SPC diet increased splenocyte IL-2 production after PMA+I stimulation compared with the CHF diet. However, the SPC group had a lower proportion of splenocytes expressing the IL-2 receptor (CD25+, P < 0.05). After PMA+I stimulation, feeding EPC normalized splenocyte production of IL-10 relative to the CLF diet, whereas SPC did not (P < 0.05). In mesenteric lymph node lymphocytes, the SPC diet group produced more IL-2 and TNF-α after PMA+I stimulation than the CHF diet, whereas the EPC diet group did not. CONCLUSIONS: Our results suggest that both egg- and soy-derived PC may attenuate high-fat diet-induced T cell dysfunction. However, egg-PC enhances, to a greater extent, IL-10, a cytokine involved in promoting the resolution phase of inflammation, whereas soy-PC appears to elicit a greater effect on gut-associated immune responses.

12.
Front Neurosci ; 18: 1363094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576870

RESUMEN

Introduction: Serotonin (5-HT) is critical for neurodevelopment and the serotonin transporter (SERT) modulates serotonin levels. Perturbed prenatal and postnatal dietary exposures affect the developing offspring predisposing to neurobehavioral disorders in the adult. We hypothesized that the postnatal brain 5-HT-SERT imbalance associated with gut dysbiosis forms the contributing gut-brain axis dependent mechanism responsible for such ultimate phenotypes. Methods: Employing maternal diet restricted (IUGR, n=8) and high fat+high fructose (HFhf, n=6) dietary modifications, rodent brain serotonin was assessed temporally by ELISA and SERT by quantitative Western blot analysis. Simultaneously, colonic microbiome studies were performed. Results: At early postnatal (P) day 2 no changes in the IUGR, but a ~24% reduction in serotonin (p = 0.00005) in the HFhf group occurred, particularly in the males (p = 0.000007) revealing a male versus female difference (p = 0.006). No such changes in SERT concentrations emerged. At late P21 the IUGR group reared on HFhf (IUGR/HFhf, (n = 4) diet revealed increased serotonin by ~53% in males (p = 0.0001) and 36% in females (p = 0.023). While only females demonstrated a ~40% decrease in serotonin (p = 0.010), the males only trended lower without a significant change within the HFhf group (p = 0.146). SERT on the other hand was no different in HFhf or IUGR/RC, with only the female IUGR/HFhf revealing a 28% decrease (p = 0.036). In colonic microbiome studies, serotonin-producing Bacteriodes increased with decreased Lactobacillus at P2, while the serotonin-producing Streptococcus species increased in IUGR/HFhf at P21. Sex-specific changes emerged in association with brain serotonin or SERT in the case of Alistipase, Anaeroplasma, Blautia, Doria, Lactococcus, Proteus, and Roseburia genera. Discussion: We conclude that an imbalanced 5-HT-SERT axis during postnatal brain development is sex-specific and induced by maternal dietary modifications related to postnatal gut dysbiosis. We speculate that these early changes albeit transient may permanently alter critical neural maturational processes affecting circuitry formation, thereby perturbing the neuropsychiatric equipoise.

13.
Indian J Clin Biochem ; 39(2): 257-263, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577143

RESUMEN

In this study, we have examined the effect of hesperidin on rats fed on an experimental high-fat diet. Male Wistar rats were given a high-fat diet orally for one month for developing an HFD (High fat- diet) model. Rats were also supplemented with hesperidin (100 mg/kg body weight) for one month. We determined serum LDL (Low-density lipoprotein) oxidation, Paraoxonase-1 (PON-1) activity, and histopathological profile of the liver. Inflammatory cytokines levels were also measured in serum. HFD induced significant changes in LDL oxidation and PON-1 activity. Liver tissue histopathology and gene expression of inflammatory markers (Il-6(Interleukin-6), TNF- alpha (Tumor necrosis factor alpha), NF-KB (Nuclear factor kappa B) show that significant changes occur in the hyperlipidemic model of rats. We also show that hesperidin can effectively improve plasma antioxidant, LDL oxidation, and inflammatory cytokine expression in rats already subjected to hyperlipidemic stress. We conclude that hesperidin may protect the liver from oxidative stress by improving hepatic function.

14.
World J Methodol ; 14(1): 89723, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38577199

RESUMEN

BACKGROUND: Excessive saturated fat intake compromises the integrity of the intestinal mucosa, leading to low-grade inflammation, impaired mucosal integrity, and increased intestinal permeability, resulting in the migration of lipopolysaccharide (LPS) to other tissues. AIM: To evaluate the chronic effects (at 10 and 16 wk) of a high-fat diet (HFD) (with 50% energy as fat) on the phylogenetic gut microbiota distribution and intestinal barrier structure and protection in C57BL/6 mice. METHODS: Forty adult male mice were divided into four nutritional groups, where the letters refer to the type of diet (control and HFD or HF) and the numbers refer to the period (in weeks) of diet administration: Control diet for 10 wk, HFD for 10 wk, control diet for 16 wk, and HFD for 16 wk. After sacrifice, biochemical, molecular, and stereological analyses were performed. RESULTS: The HF groups were overweight, had gut dysbiosis, had a progressive decrease in occludin immunostaining, and had increased LPS concentrations. Dietary progression reduced the number of goblet cells per large intestine area and Mucin2 expression in the HF16 group, consistent with a completely disarranged intestinal ultrastructure after 16 wk of HFD intake. CONCLUSION: Chronic HFD intake causes overweight, gut dysbiosis, and morphological and functional alterations of the intestinal barrier after 10 or 16 wk. Time-dependent reductions in goblet cell numerical density and mucus production have emerged as targets for countering obesity-driven intestinal damage.

15.
Nutrition ; 123: 112410, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38579382

RESUMEN

OBJECTIVE: The potential role of dietary branched-chain amino acids on circulating branched-chain amino acid levels and their relationship with metabolic health are complex, and the literature is inconsistent. We aimed to explore the dynamic effects of branched-chain amino acid supplementation on glucose and lipid homeostasis at different stages of insulin resistance in high-fat diet-fed mice. METHODS: Male C57BL/6J mice were fed with a normal chow diet, high-fat diet, or high-fat diet supplemented with 100% branched-chain amino acids for 12 or 24 wk. Metabolic parameters and gut microbiota profiling were performed at these two time points. RESULTS: High-fat diet feeding caused varying degrees of branched-chain amino acid metabolic disorders in two different stages of insulin resistance. Supplementing with branched-chain amino acids further exacerbated branched-chain amino acid accumulation in the early stage of insulin resistance (12 wk), while adding branched-chain amino acids did not further elevate branched-chain amino acid levels in the hyperglycemia and hyperinsulinemia stage (24 wk). Compared with the high-fat diet group, branched-chain amino acid supplementation did not affect body weight; liver total cholesterol and triacylglycerol levels; and serum glucose, insulin, total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels as well as glucose tolerance at these two time points but triggered dynamic changes in the gut bacterial diversity and gut microbiota composition and abundance, especially in the genus associated with obesity and related metabolic disorders. CONCLUSION: Dietary branched-chain amino acid supplementation drives dynamic changes in circulating branched-chain amino acid levels and gut microbiome without subsequent effects on glucose and lipid homeostasis in high-fat diet-induced obese mice within the parameters of our study.

16.
Foods ; 13(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611383

RESUMEN

This study investigated the impact of incorporating various inactivated probiotic formulations, with or without recombinant lactoferrin (LF) expression, into a standard chow diet on metabolic-related disorders in obese mice. After inducing obesity through a 13-week high-fat diet followed by a standard chow diet, mice received daily oral administrations of different probiotics for 6 weeks using the oral gavage approach. These probiotic formulations consisted of a placebo (MRS), heat-inactivated Lactobacillus gasseri HM1 (HK-HM1), heat-killed LF-expression HM1 (HK-HM1/LF), sonication-killed HM1 (SK-HM1), and sonication-killed LF-expression HM1 (SK-HM1/LF). The study successfully induced obesity, resulting in worsened glucose tolerance and insulin sensitivity. Interestingly, the regular diet alone improved glucose tolerance, and the addition of inactivated probiotics further enhanced this effect, with SK-HM1/LF demonstrating the most noticeable improvement. However, while regular dietary intervention alone improved insulin sensitivity, probiotic supplementation did not provide additional benefits in this aspect. Inflammation in perirenal and epididymal fat tissues was partially alleviated by the regular diet and further improved by probiotics, particularly by SK-HM1, which showed the most significant reduction. Additionally, HK-HM1 and HK-HM1/LF supplements could contribute to the improvement of serum total triglycerides or total cholesterol, respectively. Overall, incorporating inactivated probiotics into a regular diet may enhance metabolic indices, and recombinant LF may offer potential benefits for improving glucose tolerance.

17.
Nutrients ; 16(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612972

RESUMEN

Polycystic ovary syndrome (PCOS) is a multifaceted and heterogeneous disorder, linked with notable reproductive, metabolic, and psychological outcomes. During adolescence, key components of PCOS treatment involve weight loss achieved through lifestyle and dietary interventions, subsequently pursued by pharmacological or surgical therapies. Nutritional interventions represent the first-line therapeutic approach in adolescents affected by PCOS, but different kinds of dietary protocols exist, so it is necessary to clarify the effectiveness and benefits of the most well-known nutritional approaches. We provided a comprehensive review of the current literature concerning PCOS definition, pathophysiology, and treatment options, highlighting nutritional strategies, particularly those related to high-fat diets. The high-fat nutritional protocols proposed in the literature, such as the ketogenic diet (KD), appear to provide benefits to patients with PCOS in terms of weight loss and control of metabolic parameters. Among the different types of KD studies, very low-calorie ketogenic diets (VLCKD), can be considered an effective dietary intervention for the short-term treatment of patients with PCOS. It rapidly leads to weight loss alongside improvements in body composition and metabolic profile. Even though extremely advantageous, long-term adherence to the KD is a limiting factor. Indeed, this dietary regimen could become unsustainable due to the important restrictions required for ketosis development. Thus, a combination of high-fat diets with more nutrient-rich nutritional regimens, such as the Mediterranean diet, can amplify positive effects for individuals with PCOS.


Asunto(s)
Dieta Cetogénica , Síndrome del Ovario Poliquístico , Femenino , Adolescente , Humanos , Dieta Alta en Grasa , Síndrome del Ovario Poliquístico/terapia , Composición Corporal , Pérdida de Peso
18.
Nutrients ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612989

RESUMEN

Insulin resistance (IR)-related miRNAs have been associated with the development and progression of Alzheimer's disease (AD). The dietary modulation of these miRNAs could become a potential strategy to manage AD. The aim of this study was to evaluate the effect of a high-fat diet (HFD), which aggravates AD-related pathogenic processes, on serum, cortex and hippocampus IR-related miRNA expression. C57BL/6J WT and APPSwe/PS1dE9 mice were fed either an HFD or a conventional diet till 6 months of age. The mice fed with the HFD showed a significant increase in body weight and worsening glucose and insulin metabolism. miR-19a-3p was found to be up-regulated in the cortex, hippocampus and serum of APP/PS1 mice and in the serum and hippocampus of WT mice fed with the HFD. miR-34a-5p and miR-146a-5p were up-regulated in the serum of both groups of mice after consuming the HFD. Serum miR-29c-3p was overexpressed after consuming the HFD, along with hippocampal miR-338-3p and miR-125b-5p, only in WT mice. The HFD modulated the expression of peripheral and brain miRNAs related to glucose and insulin metabolism, suggesting the potential role of these miRNAs not only as therapeutic targets of AD but also as peripheral biomarkers for monitoring AD.


Asunto(s)
Enfermedad de Alzheimer , Resistencia a la Insulina , MicroARNs , Animales , Ratones , Insulina , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Enfermedad de Alzheimer/genética , Encéfalo , Glucosa , MicroARNs/genética
19.
Nutrients ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612986

RESUMEN

High-fat diets (HFDs) have pervaded modern dietary habits, characterized by their excessive saturated fat content and low nutritional value. Epidemiological studies have compellingly linked HFD consumption to obesity and the development of type 2 diabetes mellitus. Moreover, the synergistic interplay of HFD, obesity, and diabetes expedites the aging process and prematurely fosters age-related diseases. However, the underlying mechanisms driving these associations remain enigmatic. One of the most conspicuous hallmarks of aging is the accumulation of highly inflammatory senescent cells, with mounting evidence implicating increased cellular senescence in the pathogenesis of age-related diseases. Our hypothesis posits that HFD consumption amplifies senescence burden across multiple organs. To scrutinize this hypothesis, we subjected mice to a 6-month HFD regimen, assessing senescence biomarker expression in the liver, white adipose tissue, and the brain. Aging is intrinsically linked to impaired cellular stress resilience, driven by dysfunction in Nrf2-mediated cytoprotective pathways that safeguard cells against oxidative stress-induced senescence. To ascertain whether Nrf2-mediated pathways shield against senescence induction in response to HFD consumption, we explored senescence burden in a novel model of aging: Nrf2-deficient (Nrf2+/-) mice, emulating the aging phenotype. Our initial findings unveiled significant Nrf2 dysfunction in Nrf2+/- mice, mirroring aging-related alterations. HFD led to substantial obesity, hyperglycemia, and impaired insulin sensitivity in both Nrf2+/- and Nrf2+/+ mice. In control mice, HFD primarily heightened senescence burden in white adipose tissue, evidenced by increased Cdkn2a senescence biomarker expression. In Nrf2+/- mice, HFD elicited a significant surge in senescence burden across the liver, white adipose tissue, and the brain. We postulate that HFD-induced augmentation of senescence burden may be a pivotal contributor to accelerated organismal aging and the premature onset of age-related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resiliencia Psicológica , Animales , Ratones , Factor 2 Relacionado con NF-E2/genética , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/etiología , Senescencia Celular , Envejecimiento , Obesidad/etiología , Biomarcadores
20.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622592

RESUMEN

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Asunto(s)
Ciclofilina A , Dieta Alta en Grasa , Ferroptosis , Animales , Ratas , Ciclofilina A/metabolismo , Miocardio/metabolismo , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...